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Continuous area cartograms distort planimetric maps to produce a desired set of areas while preserving the topology 
of the original map. We present a computer algorithm which achieves the result iteratively with high accuracy. The 
approach uses a model of forces exerted from each polygon centroid, acting on coordinates in inverse proportion 
to distance. This algorithm can handle more realistic descriptions of polygon boundaries than previous algorithms 
and manual methods, thus enhancing visual recognition. Key Words: cartograms, thematic cartography, computer 
cartography, transformations, distortion of maps. 

Cartograms are controversial in part because they are difficult to construct and the results 
seen to date are crude or imprecise or both. They also may communicate poorly to some 
audiences. Our computer algorithm attempts to redress the balance by providing a new ap- 
proach to  constructing precise cartograms. 

Definition 
A cartogram is a map purposely distorted so that i t s  spatial properties represent quantities 

not directly associated with position on the globe. As thematic maps, cartograms emphasize 
the distribution of a variable by changing the area (or lengths) of objects on the map. There 
are two broad categories of cartograms, linear and area [for a more complete discussion see 
21. Linear cartograms express one-dimensional quantities by altering the distance component 
of maps while area cartograms use two-dimensional distortions to represent thematic infor- 
mation. Since the two forms have distinct methods of construction, we will concentrate on 
the area case exclusively. Within area cartograms the largest distinction concerns continuity; 
they can easily be produced by sacrificing continuity and surrounding all zones with varying 
amounts of blank space [i.e. 31. Despite this alternative, the traditional form of a cartogram 
remains the continuous area technique discussed as long ago as 1934 by Raisz 141. Considering 
the long-term interest in continuous area cartograms, we believe that an effective computer 
algorithm to construct them is desired. Our approach maintains continuity, and preserves 
many local features of cartographic lines that provide visual clues to the identity of the distorted 
objects. 

Chronology of Cartogram Algorithms 
The only previous publication presenting an algorithm for continuous area cartograms was 

produced by Tobler in 1973 161. He used a two step process to first fix the base map to a 
continuous surface representing the thematic variable, then to project the map on that surface 
onto a new plane introducing some distortion. The projection i s  specified by minimizing the 
Jacobian determinant of the surface as an approximation of the new areas, but the new areas 
relate to  a cellular grid, not the original polygons. Through successive iterations involving a 
quadratic function of differences between desired and actual areas, the approximation i s  im- 
proved. 

The quadratic method provides a new area for each cell, but it does not assure that the 
projection is a continuous function. Tobler describes the final convergence of the method as 

* The authors performed this research while employed at the Harvard University-Laboratory for Computer Graphics and 
Spatial Analysis. The algorithm was written by Dougenik in summer of 1981 and results were displayed as a poster at Harvard 
Computer Graphics Week 1981. A draft of this paper was presented at Harvard Graphics Week 1982. Phillip Muehrcke provided 
comments on a draft. The comments of the reviewers, Poh-Chin Lai and D .  R. F. Taylor, are also gratefully acknowledged. 
Funds from the University of Wisconsin-Madison Graduate School assisted in preparing the manuscript. 
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slow because a topological test is needed so that cell corners do not cross cell boundaries. In 
the example (a U.S. state cartogram of 1970 population) in his paper, convergence is far from 
complete after 99 iterations. The areas achieved only show a correlation coefficient of .6 with 
the areas intended which implies an explanation of only 36 percent of the variance. This result 
shows distortion in the correct direction, but the result i s  a cartogram of a different variable 
from the one intended. 

The insufficient accuracy of Tobler’s results led Chrisman to outline a new approach using 
a rubber sheet distortion [7 ] ,  The cartogram process was applied directly to the topological 
structure of the map, not through an intermediary surface. Each polygon exerted a force on 
the adjacent boundary nodes, producing a vector result, when summed for all adjacent poly- 
gons, that displaced the node’s position. The force was proposed to be proportional to the 
signed square root of the difference between current and desired area. The square root trans- 
formation converts a ratio of areas to a ratio of positions. The force was proposed to act from 
a polygon “center” on the nodes of that polygon’s boundary. All the forces of polygons 
adjacent to a node are summed to displace the node to a new location. Like Tobler, Chrisman 
planned an iterative cycle with new areas and coordinates replacing the previous ones. 

The Proposed Algorithm 
Dougenik first attempted to  implement Chrisman’s ideas in  1981 and discovered difficulties 

which led to the algorithm presented here. Both previous approaches produced forces acting 
only on a topological neighborhood and with no concept of distance decay. Dougenik rec- 
ognized the utility of force field concepts, particularly the distance decay function as applied 
to electrical, gravitational or even social phenomena. The numerator of the polygon force was 
defined as Chrisman did, but he introduced a denominator of distance (see formula 1). In 
close proximity to a centroid, the new distance weighted force i s  strong. Further away it 
diminishes, but the force i s  never ignored. The distance decay concept substitutes for the 
topological locality suggested by Chrisman. The sum of all forces (from all polygons) i s  exerted 
on each coordinate of the map causing it to be displaced. The resulting boundaries avoid 
topological damage because the distortion field is smooth and twice differentiable. The overall 
effect produces large distortions in shape, but the property of differentiability preserves con- 
formality in each small area of the map. 

(1) Fi, = (PI - q,) P,idij 
where: F, j  

pi 
q, 
d,, 
actual area i s  measured for a polygon and normalized by the sum of the actual areas. 
desired area i s  the thematic variable, also normalized by i ts  sum. 

In the implementation of formula 1, other problems surfaced. When a coordinate was very 
near a polygon center, the force exerted was tremendously large. An adjustment was em- 
ployed, patterned on the interpolation search procedure in SYMAP where Shepard attaches a 
linear function with a continuous derivative to the tail of the distance decay function [51. The 
adjustment shown in formula 2 only affects distances less than the ”radius” of the polygon. 
(The term p defined above serves as a radius, considering the polygon to be as compact as 
possible.) 

= force exerted by polygon j on point i 
= square root (actual area)/square root (a) 
= square root (desired area)/square root ( T )  

= distance from centroid of j to point i 

For d,, greater than p, use Formula (1) 
For d,, less than or equal to p,: 

F,j = (p, - qj) ( (4p, - 3d,j)/pi) (df,/py) (2) 
The adjustment in formula (2) makes the combined functions continuous and differentiable 
at the point of crossover, and it also provides a zero value when the distance goes to zero. 
While formula (2) provides the strength of the displacement, the direction of the vector i s  
determined by the line connecting the centroid to the point. A positive value of the force 
moves the point away from the centroid, and a negative force pulls towards it. 

Unlike Tobler’s method, this procedure makes no checks for topological boundary viola- 
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tions. The basic mathematics of this projection normally avoid deformation of the map to- 
pology. This property is only theoretical, because polygons are constructed by discrete co- 
ordinates not as continuous entities. Our algorithm incorporates a number of devices to avoid 
topological problems. One feature is a "force reduction factor," a number less than 1, used 
to reduce the impact of cartogram forces in the early iterations of the procedure. The force 
reduction factor i s  the reciprocal of one plus the mean of the size error. The size error is 
calculated by the ratio of area over desired area (if area i s  larger) or desired area over area in 
the other case. 

In some cases such as panhandles it is possible to produce crossing borders. However, by 
inserting coordinates at regular intervals along each line, the program can ensure smooth 
distortion of long lines and will usually avoid crossings. A sure method to avoid overlap is to 
split polygons so that there are centroids for each convex section of the shape. These functions 
require a geographical analysis system (such as Harvard's ODYSSEY system) providing polygon 
overlay and disaggregation. A further alternative would he to recast the force field concept so 
that the centroids were replaced by a "charged plate." 

As long as centroids are used there is potential difficulty from centroids outside the polygon. 
Rather than investing in complex geometric analysis, it is more reasonable to use interactive 
graphic correction of centroid location. 

Improvements in  the efficiency of the algorithm are possible. Currently the procedure (see 
Appendix) employs a brute force method-the forces of all polygons act upon every boundary 
coordinate. As long as the number of polygons is relatively small (say under 500), distortions 
can be computed for rather complex line work (thousands of points). Computation of force 
effects could be restricted in  two ways. A search limitation could be implemented so that 
infinitesimal forces from far-away polygons are excluded. Alternatively, Chrisman's approach 
could be adopted in part by performing the full search only for nodes, then interpolating the 
forces along the rest of the line. 

Example of Output 
A comparison of a cartogram base map and the standard US.  map showing the results of 

the 1960 presidential election is provided in  Figures 1 and 2. Use of a cartogram in this situation 
is appropriate because geographic area i s  unrelated to winning elections. The cartogram base, 
by adjusting states' areas to  represent electoral vote, creates a clearer impression of the close- 
ness of that election. From Figure 2 it might be possible to think that Nixon won. 

Figure 3 shows the base map before distortion, highlighting some examples of percentage 
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Figure 1. Percentage of popular vote for Kennedy-I960 election (cartogram base). 
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Figure 2. Percentage of popular vote for Kennedy--1960 election (equal area projection). 

differences between desired ”electoral area” and the area shown. Rhode Island is 18 times 
too small, Alaska starts out 13 times too large, while Florida i s  only 7 percent smaller than 
desired. Figures 4, 5, and 6 show the results of iterations leading to the final result. After eight 
iterations (in Figure 6) the mean percentage difference between actual and desired state areas 
i s  1.7 percent. This cartogram is considered sufficiently accurate to use for Figure 1 .  

Figure 3. Selected proportionate error (equal area projection) 
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Figure 4. Selected proportionate error (after f i rst  iteration) 

Virtually all the error is located in Nevada and Alaska which are still too  large. Alaska, being 
a d is jo in t  polygon, exhibi ts a star l i ke  contract ion d u e  t o  the  operat ion o f  t he  distance 
weighting. It wou ld  b e  a bit more pleasing t o  scale Alaska beforehand, but this result shows 
the actual effect on raw maps. A pre-scaled Alaska, combined with a split-up California, could 
produce a map of near perfect accuracy. 

Figure 5 .  Selected proportionate error (after second iteration). 
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Figure 6. Selected proportionate error (after eighth iteration). 

Accuracy and Convergence 
The electoral variable used for the cartogram examples here, being based on the population 

distribution over the states, i s  rather well behaved for this algorithm. In general, the results 
are more pleasing when the variable is spatially autocorrelated, less pleasing in cases like 
California/Nevada where the difference is sharp. In addition, the use of electoral votes trans- 
forms population figures (due to the two Senate seats) so that states do not fall too close to 
zero, relative to the maximum value (47). The algorithm will operate for less well-conditioned 
data, but the results may not be quite as pleasing. 

Cartograms have been produced by Dougenik for the U.S. states using other, less autocor- 
related variables, such as egg production. In this case, the low values are much closer to zero 
(relative to the maximum). For example, Nevada nearly vanishes, while Arkansas expands 
remarkably. The egg production achieved reasonable convergence, but it took more iterations 
than the electoral vote map. 

As a further example, the algorithm has been applied to a population cartogram of Massa- 
chusetts by municipality. These 351 cities and towns range in population from Boston’s 
hundreds of thousands to many Berkshire towns less than 100. The population surface at the 
more local level has some sharp drops. Although Boston i s  surrounded by rings of suburbs, 
some of the smaller cities particularly in the west are not. When applied to the Massachusetts 
case, the algorithm achieved 7 percent average deviation after twenty iterations. The smallest 
towns were flattened beyond recognition, but the overall shape was remarkably clear. Most 
of the error came from small towns which were still too large. The proper solution would be 
to aggregate the small towns before applying the procedure so that the spatial unit would be 
large enough to be visible. 

These few applications do not constitute a formal proof of convergence or accuracy for all 
applications. But they point to a few practical rules that will lead to more useful results. First, 
the perception of shape will be best when the variable i s  spatially autocorrelated. Second, 
zones with complex shapes should be cut into separate, more nearly convex portions for 
computation, then reaggregated for display. Third, standard rules of mapping must be ex- 
tended to incorporate cartogram problems. Traditionally scale translates into line weights, 
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distance tolerances and minimum mapping units. In the case of a cartogram, scale puts limits 
on the thematic variable. Small zones should be aggregated into nearby zones, preferably 
sharing other characteristics. 

Conclusion 
The algorithm outlined here and listed in the Appendix provides an effective means to 

construct continuous area cartograms. It operates substantially more quickly than Tobler's 
previous algorithm (8 versus 99 iterations) and it comes much closer to providing the desired 
areas. Availability of this algorithm should make it possible to generate continuous area car- 
tograms without the problems of overgeneralization. 

Appendix: A Procedure for Producing Cartograms 
For each polygon 

Read and store PolygonValue (negative value illegal) 
Sum PolygonValue into TotalValue 

For each polygon 

Sum areas into TotalArea 
For each polygon 

For each iteration (user controls when done) 

Calculate area and centroid (using current boundaries) 

Desired = (TotalArea * (PolygonValuelTotaIValue)) 
Radius = SquareRoot (Areah) 
Mass 
SizeError 

= SquareRoot (Desiredln) - SquareRoot (Areah) 
= Max(Area, Desired) / Min(Area, Desired) 

ForceReductionFactor = 1 / (1 + Mean (SizeError)) 
For each boundary line; Read coordinate chain 

For each coordinate pair 
For each polygon centroid 

Find angle, Distance from centroid to coordinate 
If (Distance > Radius of polygon) 

Fij = Mas * (RadiWDistance) 
Else 

Fij = Mass * (Distance A2 I Radius A2) * 
(4 - 3 * (Distance / Radius)) 

Using Fij and angles, calculate vector sum 
Multiply by ForceReductionFactor 
Move coordinate accordingly 

Write distorted l i n e  t o  output and plot result 
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